## **Update March 2017:**

Juvenile Fish Bypass Construction, Adult PIT Arrays, and Monitoring of Postconstruction Temperature Reduction and Sound/Vibration on Adult Salmon Passage through the Lower Granite ladder.

**Chris Pinney** Fish Biologist

Tim Wik Project Manager

Ryan Laughery Hydraulic Engineer


**David Trachtenbarg** Fish Biologist





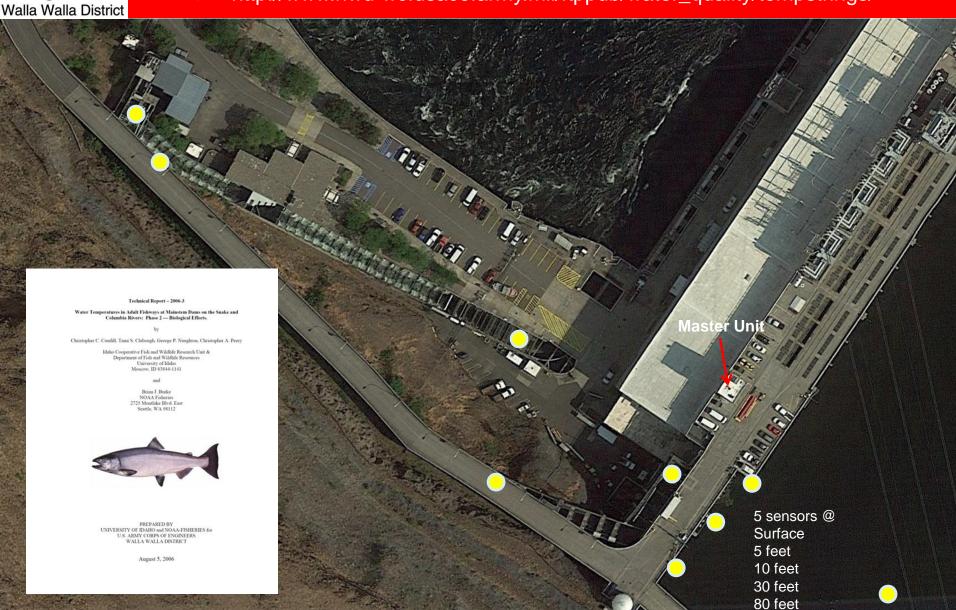
US Army Corps of Engineers
BUILDING STRONG®

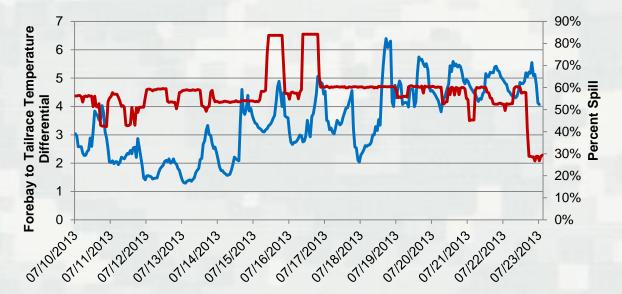











US Army Corps of Engineers ® Walla Walla District

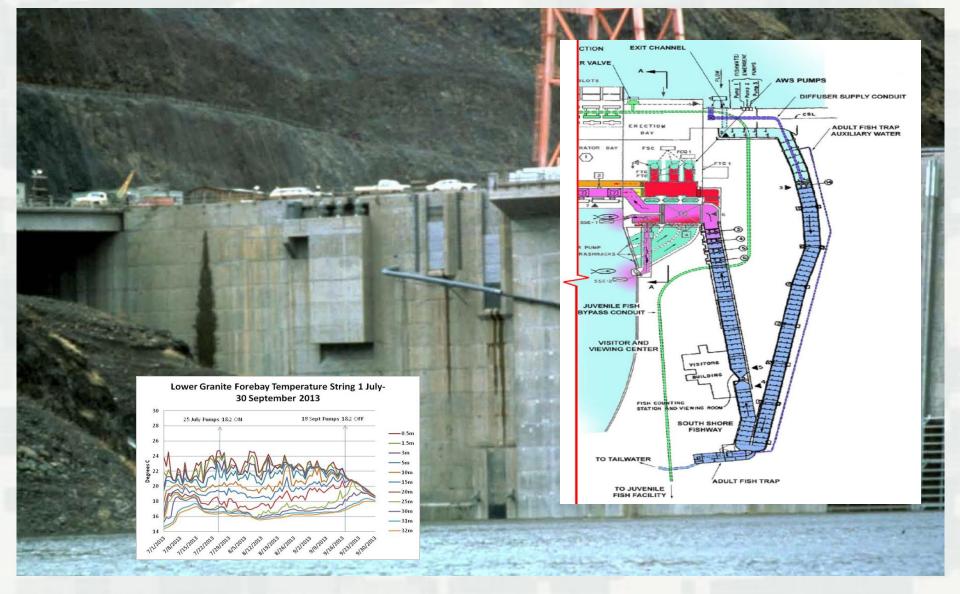

## Water Temperature Monitoring

- > ~9 locations adjusted from 2013/2014 in 2015/2016
- http://www.nwd-wc.usace.army.mil/ftppub/water\_quality/tempstrings/





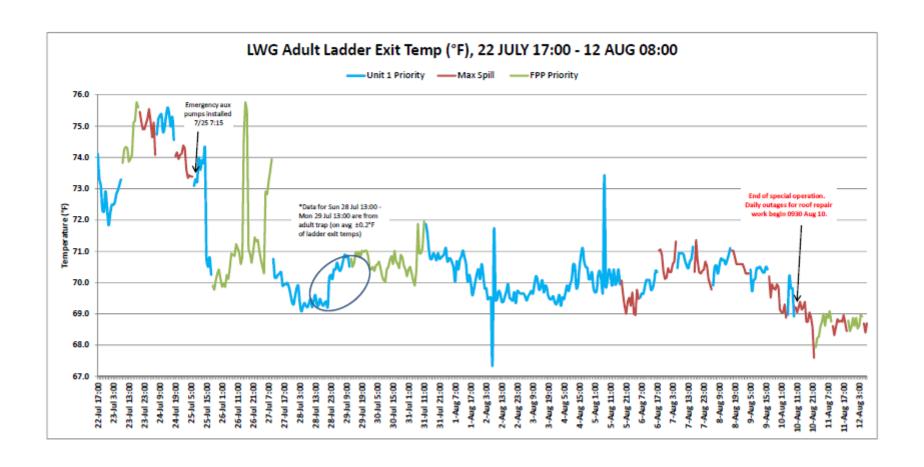
## 2013 Lower Granite Dam




## Lower Granite Forebay Temperature String 1 July-30 September 2013



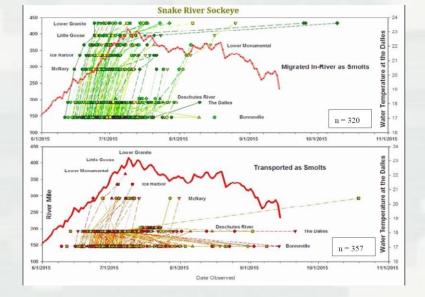


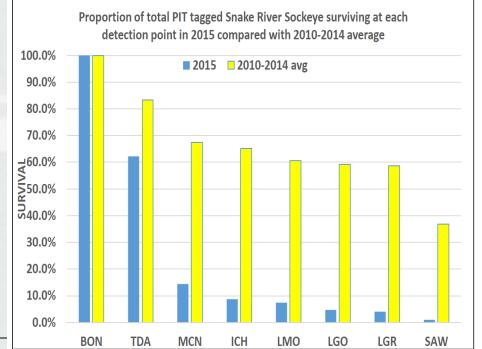


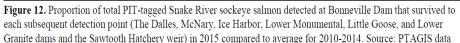





Lower Granite Dam forebay face circa 1974





**Table 4.** Estimated annual survival rates of adult Snake River sockeye salmon by adult migration year and juvenile migration history from Bonneville Dam to the Sawtooth Valley (yellow shaded cells) indicate statistically significant differences, P<0.05. Source: PTAGIS data

| A 3114                     | T                                |          | Survival Estimates (%) |               |                |                              |  |  |
|----------------------------|----------------------------------|----------|------------------------|---------------|----------------|------------------------------|--|--|
| Adult<br>Migration<br>Year | Juvenile<br>Migration<br>History | # at BON | BON to<br>MCN          | MCN to<br>LGR | BON to<br>LGR* | LGR to<br>Sawtooth<br>Valley |  |  |
| 2010                       | Inriver                          | 32       | 84                     | 96            | 81             | 77                           |  |  |
| 2010                       | Transported                      | 8        | 88                     | 74            | 63             | 80                           |  |  |
| 2011                       | Inriver                          | 307      | 64                     | 97            | 62             | 75                           |  |  |
| 2011                       | Transported                      | 209      | 69                     | 95            | 66             | 77                           |  |  |
| 2012                       | Inriver                          | 111      | 57                     | 94            | 53             | 64                           |  |  |
| 2012                       | Transported                      | 11       | 55                     | 67            | 36             | 50                           |  |  |
| 2013                       | Inriver                          | 136      | 76                     | 76            | 57             | 33                           |  |  |
| 2013                       | Transported                      | 69       | 49                     | 38            | 19             | 31                           |  |  |
| 2014                       | Inriver                          | 216      | 71                     | 93            | 66             | 56                           |  |  |
| 2014                       | Transported                      | 129      | 43                     | 95            | 41             | 55                           |  |  |
| 2015                       | Inriver                          | 320      | 26                     | 33            | 8              | 29^                          |  |  |
| 2015                       | Transported                      | 357      | 5                      | 0             | 0              | 0                            |  |  |

<sup>\*</sup> The survival estimate for the BON to LGR reach is the product of survival from (BON to MCN) x (MCN to LGR For example, (0.84) x (0.96) = 0.81 or 81%.



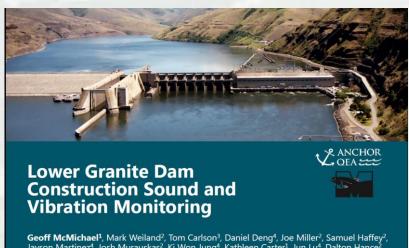








<sup>^</sup> There were 27 detections of PIT tagged adults at Lower Granite Dam in 2015 (transported and inriver juvenile migrants combined). Three of the 27 were transported to the hatchery for spawning and 24 migrated instream. Of these 24, only seven (i.e., 29%) were detected in the Sawtooth Valley


## Lower Granite Juvenile Fish Bypass System (JFF Upgrade)

- Phase 1A
  - ► Turbine gatewell orifices to JFF juvenile fish separator
    - Construction began late 2014
    - Project Completion March 2018
- Phase 1b
  - Primary outfall pipe redesign and relocation
    - Construction ~November 2016 to March 2018









Geoff McMichael<sup>1</sup>, Mark Weiland<sup>2</sup>, Tom Carlson<sup>3</sup>, Daniel Deng<sup>4</sup>, Joe Miller<sup>2</sup>, Samuel Haffey<sup>2</sup>, Jayson Martinez<sup>4</sup>, Josh Murauskas<sup>2</sup>, Ki Won Jung<sup>4</sup>, Kathleen Carter<sup>1</sup>, Jun Lu<sup>4</sup>, Dalton Hance<sup>2</sup>, Michael Gray<sup>2</sup>, Scott Titzler<sup>4</sup>, Larissa Rohrbach<sup>2</sup>, Kristi Geris<sup>2</sup>, and John Skalski<sup>5</sup>

Mainstern Fish Research LLC, Richland, WA, 2Anchor QEA, Seattle, WA, 3ProBioSound LLC, Holmes Beach, FL, 4Battelle, Richland WA, 5School of Aquatic & Fisheries Sci., U. of Washington, Seattle, WA

USACE POC: Chris Pinney, Walla Walla District

January 2017 Lower Granite Adult Passage Evaluation

## Sound and Vibration Characterization Report

#### Prepared for

U.S. Army Corps of Engineers 201 North Third Avenue Walla Walla, Washington 99362-1876

#### Prepared by

Anchor QEA, LLC 23 South Wenatchee Avenue, Suite 220 Wenatchee, Washington 98801

Mainstem Fish Research, LLC 65 Park Street Richland, Washington 99354

ProBioSound LLC 622 Dundee Ln Holmes Beach, Florida 34217

Pacific Northwest National Laboratory P.O. Box 999 Richland, Washington 99352

Draft S&V Characterization Report out January 2017.

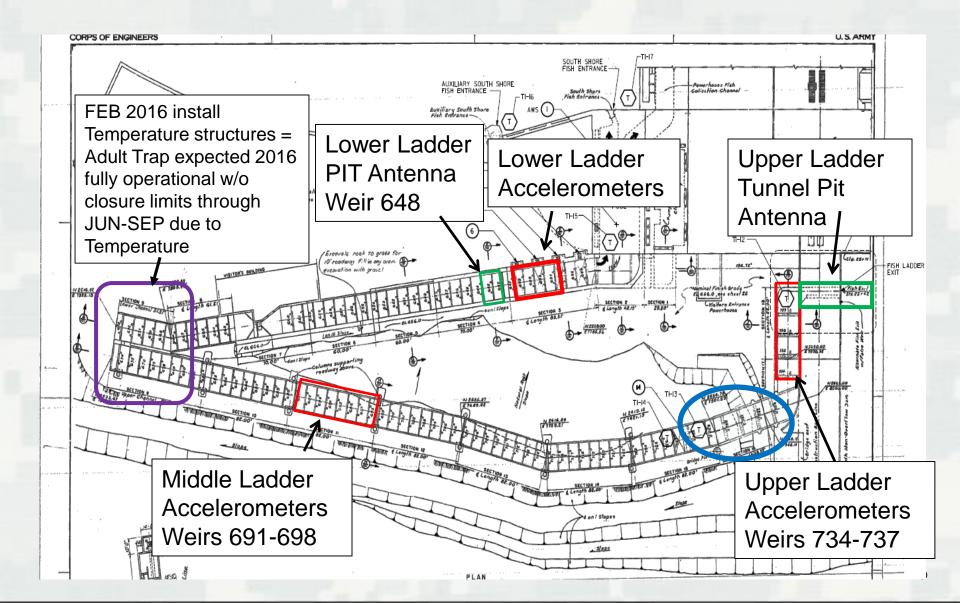
Final S&V Characterization Report due 30 March 2017.

Draft Adult Salmon Passage Behavior Response Report due 30 March 2017 for ~45 day Review.





## Lower Granite Monitoring Locations



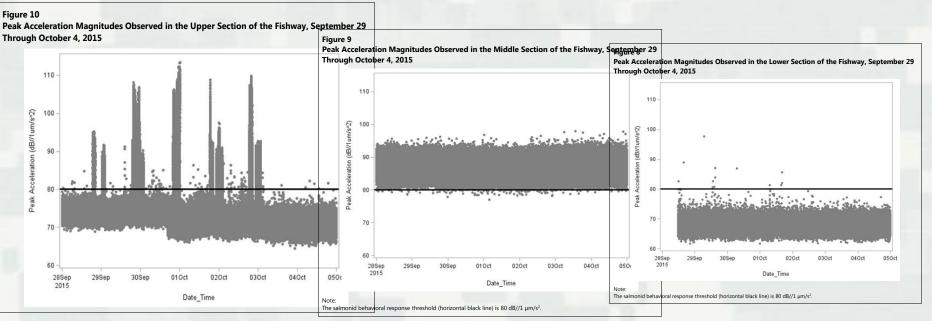
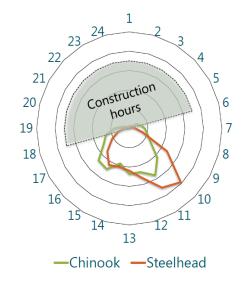




Table 1
Percent of Peak Acceleration Values that Exceeded the Salmonid Behavioral Response
Threshold by Time, Activity, and Location

|                  |        | Fis   | Fishway Monitoring Location |       |  |  |  |  |
|------------------|--------|-------|-----------------------------|-------|--|--|--|--|
| Activity         | Period | Upper | Middle                      | Lower |  |  |  |  |
| Non-Construction | Day    | 26.52 | 99.96                       | 0.01  |  |  |  |  |
| Non-Construction | Night  | 31.53 | 99.96                       | 0.02  |  |  |  |  |
| Construction     | Day    | 24.38 | 99.97                       | 0.06  |  |  |  |  |
| Construction     | Night  | 34.53 | 99.96                       | 0.26  |  |  |  |  |

Note:

#### Salmonid behavioral response threshold is 80 dB//1 $\mu$ m/s<sup>2</sup>.

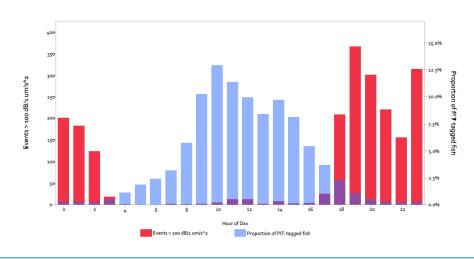







## 2015 Construction Timing and Passage

- Construction at night
- Limited study fish during night hours
  - 10.8% of Chinook salmon
  - 6.8% of steelhead




**Factors Influencing Passage at Lower Granite Dam** Presented by J. Murauskas, M. Weiland, J. Miller, J. Skalski, and R. Townsend



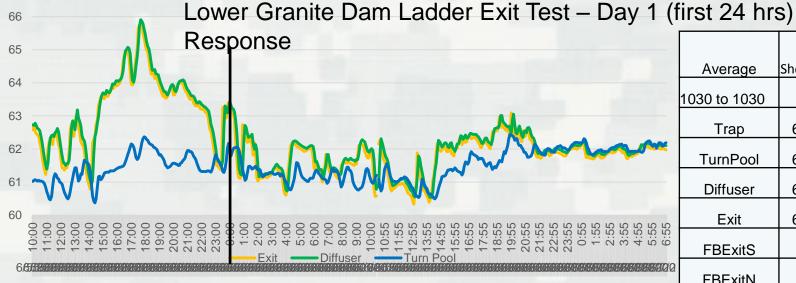


## High magnitude events vs fish passage timing



Lower Granite Dam Construction Sound and Vibration Monitoring Presented by Mainstem Fish Research and Anchor QEA















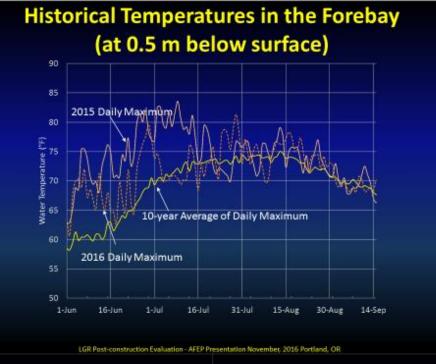

| Average      | Shower OFF | Shower ON |
|--------------|------------|-----------|
| 1030 to 1030 | 6/5/2016   | 6/6/2016  |
| Trap         | 60.43076   | 61.41671  |
| TurnPool     | 61.35462   | 61.68118  |
| Diffuser     | 62.62913   | 61.95598  |
| Exit         | 62.52031   | 61.86045  |
| FBExitS      | 62.9941    | 62.40244  |
| FBExitN      | 63.1809    | 61.80992  |
| Differential | 1.165694   | 0.179268  |

Lower Granite Dam Ladder Travel Time (PIT detection time in hours, delta Temperature 1-4° F @ site, Diff T ~<1-3.5° F)

| SummaryTT (hours)          | Shower | N  | Min  | Max  | Average | Median |
|----------------------------|--------|----|------|------|---------|--------|
|                            |        |    |      |      |         |        |
| May 30 1038 to June 1 0638 | Off    | 11 | 0.08 | 1.53 | 0.37    | 0.13   |
|                            |        |    |      |      |         |        |
| June 6 1038 to June 8 0638 | On     | 21 | 0.07 | 0.42 | 0.16    | 0.11   |

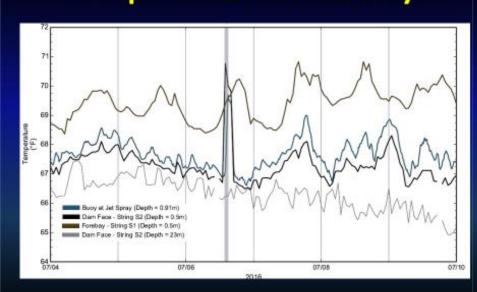
Lower Granite Dam Ladder Exit Pool Residence Time (PIT detection time in minutes, delta Temperature 1-4° F @ site, Diff T ~<1-3.5° F)



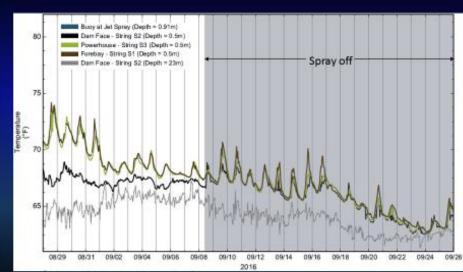

| SummaryTT (minutes)        | Shower | N   | Min | Max  | Average | Median |
|----------------------------|--------|-----|-----|------|---------|--------|
|                            |        |     |     |      |         |        |
| May 30 1038 to June 1 0638 | Off    | 118 | 0.1 | 30.0 | 4.9     | 3.4    |
|                            |        |     |     |      |         |        |
| June 6 1038 to June 8 0638 | On     | 23  | 0.2 | 13.1 | 2.8     | 0.7    |

Post-construction Evaluation of Adult Fishway Temperature Differential Reduction at Lower Granite Dam in 2016

Peter Johnson (LGL)


Pradeep Mugunthan, Joe Miller, Samuel Haffey, Mark Weiland, Josh Murauskas, Dakota Passero, Jenny DiGiulio, Zheng Wang (Andero QEA)

John Skalski, Rich Townsend (University of Washington)

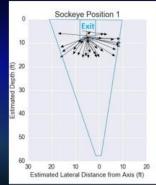


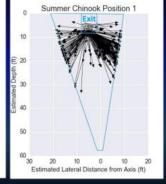



## **Temperature Results: July**



## Temperature Results: September



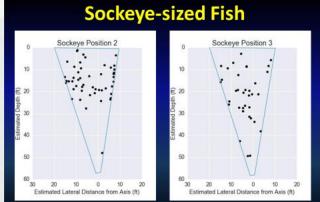


### **Conclusions: Fish Behavior**

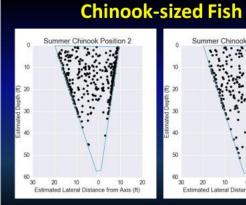
#### **Sockeve-sized Fish**

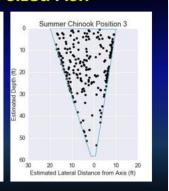
- · No preferred lateral direction
- Do not immediately go very deep
- Appear to promptly move upstream
- More deeply distributed further upstream

## **Fish Behavior Results**

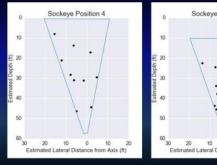


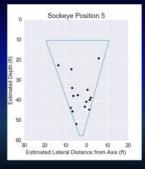




### **Conclusions: Fish Behavior**

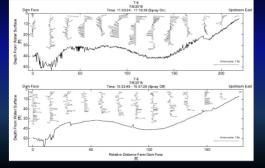

#### **Chinook-sized Fish**

- · Prefer moving east
- · Some immediately go deep
- Appear to delay upstream movement
- Depth distribution fairly uniform further upstream

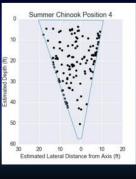

LGR Post-construction Evaluation - AFEP Presentation November, 2016 Portland, OR






## **Sockeye-sized Fish**



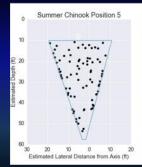
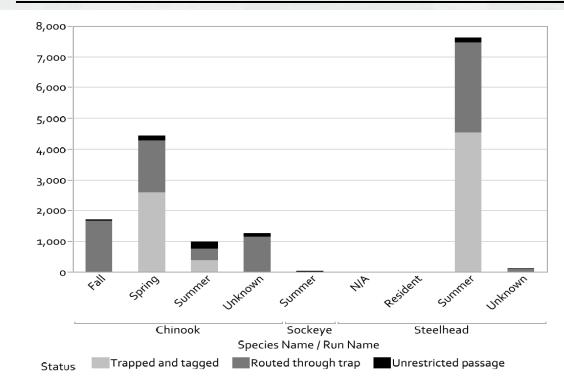


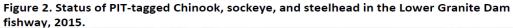

## **Velocity Profiles at Transect T6**



### **Chinook-sized Fish**

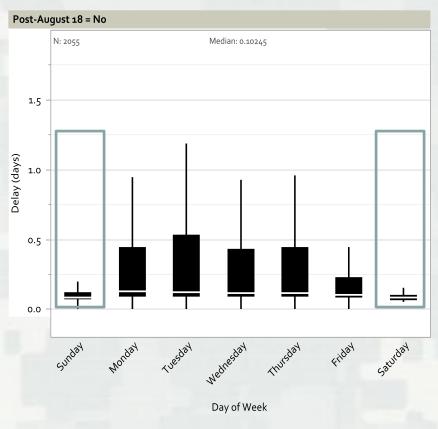


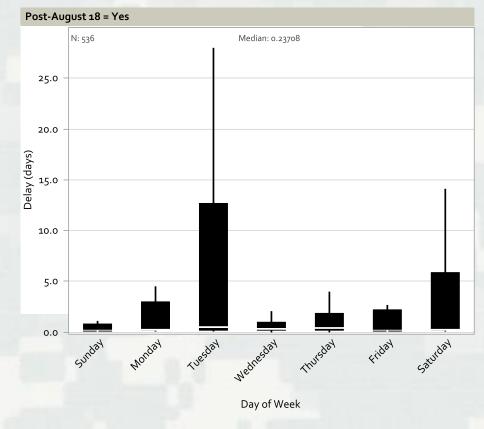


Table 1. Status of PIT-tagged Chinook, sockeye, and steelhead in the Lower Granite Dam fishway, 2015.

|              |          | Trapped and tagged passage |       | Routed through trap |        | Unrestricted |       |
|--------------|----------|----------------------------|-------|---------------------|--------|--------------|-------|
| Species Name | Run Name | N                          | Row % | N                   | Row %  | N            | Row % |
| Chinook      | Fall     | 0                          | 0.0%  | 1,667               | 98.0%  | 34           | 2.0%  |
|              | Spring   | 2,604                      | 58.9% | 1,682               | 38.0%  | 137          | 3.1%  |
|              | Summer   | 393                        | 40.0% | 374                 | 38.1%  | 215          | 21.9% |
|              | Unknown  | 0                          | 0.0%  | 1,151               | 92.0%  | 100          | 8.0%  |
|              | All      | 2,997                      | 35.9% | 4,874               | 58.3%  | 486          | 5.8%  |
| Sockeye      | Summer   | 0                          | 0.0%  | 6                   | 20.0%  | 24           | 80.0% |
|              | All      | 0                          | 0.0%  | 6                   | 20.0%  | 24           | 80.0% |
| Steelhead    | N/A      | 0                          | 0.0%  | 6                   | 75.0%  | 2            | 25.0% |
|              | Resident | 0                          | 0.0%  | 2                   | 100.0% | 0            | 0.0%  |
|              | Summer   | 4,536                      | 59.6% | 2,932               | 38.5%  | 146          | 1.9%  |
|              | Unknown  | 0                          | 0.00% | 106                 | 84.1%  | 20           | 15.9% |
|              | All      | 4,536                      | 58.5% | 3,046               | 39.3%  | 168          | 2.2%  |
| All          | All      | 7,533                      | 46.7% | 7,926               | 49.1%  | 678          | 4.2%  |



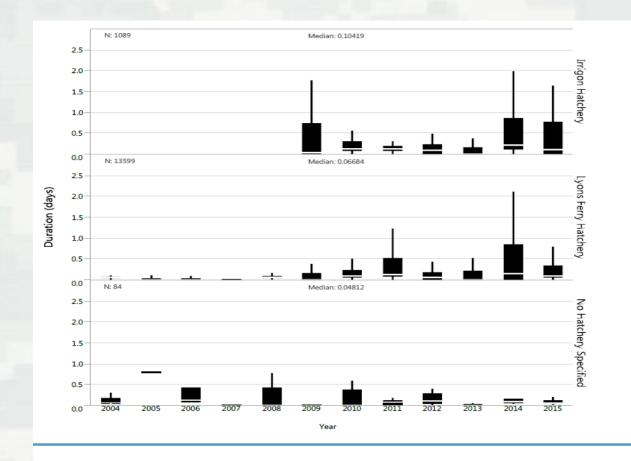



**BUILDING STRONG**<sub>®</sub>






**Figure 1**. Box plots of passage duration (from entrance to exit) of PIT-tagged adult Chinook salmon at Lower Granite Dam in 2016 by day of week <u>prior to August 18</u>. Whiskers represent Q1 – 1.5 × interquartile range or Q3 + 1.5 × interquartile range; the box encompasses Quartile 1, Quartile 2 (median, shown by transparent line), and Quartile 3. Positive outliers and maximum values are not shown to focus on a scale representing a majority of passage events. **Delays are significantly different between weekdays (with trapping) and weekends (Median Test, p < 0.001).** 




**Figure 2**. Box plots of passage duration (from entrance to exit) of PIT-tagged adult Chinook salmon at Lower Granite Dam in 2016 by day of week <u>after August 18</u>. Whiskers represent Q1 - 1.5  $\times$  interquartile range or Q3 + 1.5  $\times$  interquartile range; the box encompasses Quartile 1, Quartile 2 (median, shown by transparent line), and Quartile 3. Positive outliers and maximum values are not shown to focus on a scale representing a majority of passage events. **Delays are not significantly longer on weekdays than weekends (Median Test, p = 0.098); although delays are significantly than prior to August 18 (p < 0.001).** 

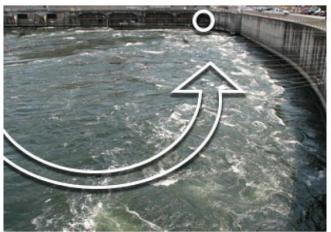


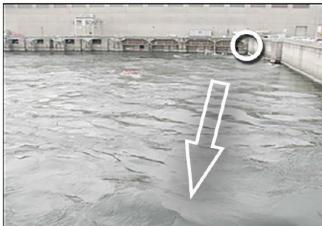






Hatchery fish (top panels) more likely to spend time in fishway compared to wild fish (bottom)


# Duration Between First and Last Detections in Fishway from 2004 to 2015






**Table 6.** Adult Chinook counts in the ladders at Lower Granite Dam during July 25–August 10, 2013, when emergency pumps were in operation and Turbine Unit 1 alternated with Unit 2. The operation was designed to enhance tailrace conditions while spilling water up to the Total Dissolved Gas cap (120% of saturation) as measured in the tailrace at each project. Source: USACE data

| Number of Adults      | Unit 2 | Unit 1 |
|-----------------------|--------|--------|
| Ascending Ladder      | 260    | 2,021  |
| Descending Ladder     | 232    | 1,337  |
| Net Ascending         | 28     | 684    |
| <b>Hours Operated</b> | 88     | 239    |
| Net Ascending /       |        |        |
| Hour                  | 0.3    | 2.9    |





**Figure 15**. Tailrace conditions at Lower Granite Dam in July 2013 showing the reverse eddies with Turbine Unit 2 operating (left) and improved downstream flow with Unit 1 operating (right). Circles show ladder entrances. Arrow on the left shows the direction of the back eddies, which can confuse adults trying to orient into the current to move upstream. Arrows on the right show the direction of flow (away from the ladder entrance) without the reverse eddies. Photo courtesy of Darren Ogden (Northwest Fisheries Science Center).



